skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rosso, Isabella"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Scotia Sea is the site of one of the largest spring phytoplankton blooms in the Southern Ocean. Past studies suggest that shelf‐iron inputs are responsible for the high productivity in this region, but the physical mechanisms that initiate and sustain the bloom are not well understood. Analysis of profiling float data from 2002 to 2017 shows that the Scotia Sea has an unusually shallow mixed‐layer depth during the transition from winter to spring, allowing the region to support a bloom earlier in the season than elsewhere in the Antarctic Circumpolar Current. We compare these results to the mixed‐layer depth in the 1/6° data‐assimilating Southern Ocean State Estimate and then use the model output to assess the physical balances governing mixed‐layer variability in the region. Results indicate the importance of lateral advection of Weddell Sea surface waters in setting the stratification. A Lagrangian particle release experiment run backward in time suggests that Weddell outflow constitutes 10% of the waters in the upper 200 m of the water column in the bloom region. This dense Weddell water subducts below the surface waters in the Scotia Sea, establishing a sharp subsurface density contrast that cannot be overcome by wintertime convection. Profiling float trajectories are consistent with the formation of Taylor columns over the region's complex bathymetry, which may also contribute to the unique stratification. Furthermore, biogeochemical measurements from 2016 and 2017 bloom events suggest that vertical exchange associated with this Taylor column enhances productivity by delivering nutrients to the euphotic zone. 
    more » « less
  2. Abstract The Drake Passage Time‐series (DPT) is used to quantify the spatial and seasonal variability of historically undersampled, biogeochemically relevant properties across the Drake Passage. From 2004–2017, discrete ship‐based observations of surface macronutrients (silicate, nitrate, and phosphate), temperature, and salinity have been collected 5–8 times per year as part of the DPT program. Using the DPT and Antarctic Circumpolar Current (ACC) front locations derived from concurrent expendable bathythermograph data, the distinct physical and biogeochemical characteristics of ACC frontal zones are characterized. Biogeochemical‐Argo floats in the region confirm that the near‐surface sampling scheme of the DPT robustly captures mixed‐layer biogeochemistry. While macronutrient concentrations consistently increase toward the Antarctic continent, their meridional distribution, variability, and biogeochemical gradients are unique across physical ACC fronts, suggesting a combination of physical and biological processes controlling nutrient availability and nutrient front location. The Polar Front is associated with the northern expression of the Silicate Front, marking the biogeographically relevant location between silicate‐poor and silicate‐rich waters. South of the northern Silicate Front, the silicate‐to‐nitrate ratio increases, with the sharpest gradient in silicate associated with the Southern ACC Front (i.e., the southern expression of the Silicate Front). Nutrient cycling is an important control on variability in the surface ocean partial pressure of carbon dioxide (pCO2). The robust characterization of the spatiotemporal variability of nutrients presented here highlights the utility of biogeochemical time series for diagnosing and potentially reducing biases in modeling Southern Ocean pCO2variability, and by inference, air‐sea CO2flux. 
    more » « less